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Abstract—The keystroke biometric classification system 

described in this study was evaluated on two types of short 

input – passwords and numeric keypad input.  On the 

password input, the system outperforms 14 other systems 

evaluated in a previous study using the same raw input data.  

The three top performing systems in that study had equal 

error rates between 9.6% and 10.2%.  With the classification 

system developed in this study, equal error rates of 8.7% were 

achieved on both the features from the previous study and on a 

new set of features.  On the numeric keypad input, the system 

achieved an equal error rate of 10.5% on the features from the 

previous study and 6.1% on a new set of features.   
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I.  INTRODUCTION 

Keystroke biometric systems measure typing 

characteristics believed to be unique to an individual and 

difficult to duplicate [5, 12].  The keystroke biometric is a 

behavioral biometric using a number of measurements or 

features to characterize an individual such as key press 

duration (dwell) times, transition (latency) times, and the 

identity of the keys pressed.  Most previous keystroke 

biometric studies dealt with passwords or other short input 

[3, 10, 13, 15, 16, 17, 20, 22, 23], and there are now a 

number of “password hardening” commercial products, such 

as [1, 2, 4, 6, 11, 14].  Fewer studies have investigated long-

text input [8, 10, 18, 19, 21, 24, 25].  The short and long 

input keystroke applications are considerably different and 

the short input is usually fixed in contrast to arbitrary text 

for long input. 

Biometric analysis of short keystroke input has high 

security importance in two common applications – 

password input and number pad input.  The password 

application is important because computer users frequently 

use passwords to logon to computers and to access email, 

bank, brokerage, and online store accounts.  The number 

pad input application is important for similar reasons 

because digit only passcodes are used for access on 

automated teller machines (ATMs), on electronic security 

keypads for building and room access, and on mobile/digital 

phones.  Passwords and digit-only passcodes are currently 

the only security measures employed in these access 

applications and the password/passcode information that we 

are required to remember is easily compromised.  These 

security threat situations could be improved considerably if 

it were possible to authenticate the user more precisely, 

distinguishing between the genuine user and an imposter.   

Two studies were conducted to measure the performance 

of the keystroke biometric authentication system in the 

password and numeric keypad input applications.  Carnegie 

Mellon University (CMU) conducted similar studies [15, 

17].  Using the passwords data from CMU [15], the first 

study consisted of experiments using two different feature 

sets – the features used in the CMU study and a new feature 

set created for this study.  The second study on short 

numeric input used two different feature sets – the CMU 

features and a new feature sets created for the study.  

The remainder of this paper is organized as follows: 

section 2 describes the classification system, section 3 the 

CMU data studies, section 4 the numeric keypad studies, 

section 5 the discussion, and section 6 the conclusion.  

II. PACE UNIVERSITY CLASSIFICATION SYSTEM 

This study evaluates the performance of short input on a 

recently developed, closed-system keystroke biometric 

classification system.
 1
  The key component of this system is 

the Pace University classification procedure, referred to here 

as the Pace Classifier, which is described briefly here and in 

more detail in the companion paper (see footnote).  All of 

the experiments described in this paper used the Pace 

Classifier.   

What was varied were the data and the feature sets, as 

described in the following sections.  All the features used in 

these experiments were normalized into the range 0-1 by 

using a min/max of +/- 2 standard deviations of each feature 

obtained over the population. 

The Pace Classifier is based on a vector-difference 

authentication model which transforms a multi-class 

problem into a two-class problem [19, 25].  The resulting 

two classes are within-person (“you are authenticated”) and 

between-person (“you are not authenticated”).  This 

dichotomy model is a strong inferential statistics method 

found to be particularly effective in large open biometric 

                                                           
1 Monaco, et al., “Recent advances in the development of a long-

text-input keystroke biometric authentication system for arbitrary 

text input”, also submitted to this conference. 
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systems where it is not possible to train the system on all 

individuals in the population.   

The application of interest here, however, involves closed 

populations of users where it is possible to train the system 

on all of the authorized users.  Therefore, a more accurate 

“engineering” closed-system procedure was developed for 

these and similar applications.  Two performance enhancing 

modifications were made in converting the open to the 

closed-system procedure.  First, the new procedure matches 

the claimed user’s sample against all the enrollment samples 

from that user for authentication rather than just one as in 

the open system.  Second, the new procedure is user-focused 

in that only the claimed user’s enrollment samples and their 

relationships to the other users’ enrollment samples are 

utilized in the classification process.   

In the simulated authentication process, a claimed user’s 

keystroke sample requiring authentication is first converted 

into a feature vector.  The differences between this feature 

vector and all the earlier-obtained enrollment feature vectors 

from this user are computed, and the resulting difference 

vectors are matched against the within-person training 

difference vectors for authentication or against the between-

person difference vectors for non-authentication using the k-

nearest-neighbor procedure.  Thus, differences of difference 

vectors are being calculated.   

Receiver operating characteristic (ROC) curves 

characterize the performance of biometric systems and show 

the trade-off between the False Accept Rate (FAR) and the 

False Reject Rate (FRR).  In this study, the ROC curves 

were obtained by using a weighted procedure of the k 

nearest neighbors [25].  This procedure uses a linear rank 

weighting, assigning the first choice (nearest neighbor) a 

weight of k, second a weight of k-1, ... , and the k
th

 a weight 

of 1.  The maximum score when all k choices are within-

person is k+(k-1)+...+ 1 = k(k+1)/2, and the minimum score 

is 0.  Now, consider that a user is authenticated if the 

weighted-within-person choices are greater or equal to l, 

where l varies from 0 to k(k+1)/2, and compute the (FRR, 

FAR) pairs for each l to obtain an ROC curve.  The Equal 

Error Rate (EER) is where FAR = FRR on the ROC curve.  

These experiments use k = 21 to provide weighted scores in 

the range 0-231 and thus 232 points on the ROC curve.  

This value of k was chosen to generate a reasonable number 

of points on the ROC curves.  When deploying the system 

the value of l is chosen to establish an appropriate operating 

point trade-off between FAR and FRR on the ROC curve. 

III. CMU PASSWORD DATA STUDY 

The data for the password study were made available by 

Killourhy and Maxion [15].  Two experiments were 

conducted on the CMU 51 subject data using the closed-

system Pace Classifier described in the previous section.   

Due to the large number of samples per user, a repeated 

random sub-sampling validation method was used to derive 

the ROC curve. Each experiment was repeated three times, 

each time randomly splitting the feature space into 380 

reference samples and 20 query samples per user. The 

reference samples are further refined by k-means clustering 

in order to reduce the size of both the within and between 

spaces. For each user, this would be equivalent to an 

authentication attempt after having recorded 380 samples. 

The key independent variable was the feature sets. 

The first experiment used the CMU 51 subject data and 

re-implemented the 31 CMU features [15].  From the 10-

character password “.tie5Roanl” + Enter, the 31 CMU 

features were the 11 hold (dwell) times plus the 10 

keydown-keydown and 10 keyup-keydown transition times.   

The second experiment was similar to the first but used a 

set of 75 features designed for this study.  The 75 features 

were time differences between atomic keystroke events, 

where each event is the action-key combination occurring 

instantaneously at time t.  For example, ‘press e’ and 

‘release e’ are considered as two separate events and are not 

necessary consecutive.  The time differences of every 2-

gram which occurs over the population was taken for each 

user.  So although each feature vector contains 75 features, 

only 21 of these are non-zero, since there are only 22 events 

(21 pairs).  The non-zero features are usually different for 

each user because some users consistently overlap certain 

keys while others do not.  Thus, there are 75 features, but it 

depends on the user which features are non-zero.  

A summary of the results is shown in Table 1, the ROC 

curves in Fig. 1, and the FAR/FRR versus parameter L 

curves in Fig. 2.  Although the EER can be approximated 

from the ROC curve, it can be more accurately determined 

from the crossover point on the FAR/FRR versus L curve (L 

is used in place of l to avoid confusion with 1).  Although L 

goes from 0-231, expanded FAR/FRR plots at low L values 

are shown here because the crossover points on the 

FAR/FRR versus L curves occur in that region.   
 

Table 1. Experimental Results on CMU Password Data. 

Experiment
Number of 

Subjects

Centroids 

per Subject

Number of 

Features

EER 

(%)

1 51 20 31 8.7

2 51 20 75 (21) 8.7  
 

 
Fig. 1. ROC curves for the CMU data experiments. 
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Fig. 2. FAR/FRR versus L: Exp. 1 (left) and Exp. 2 (right). 

 

IV. NUMERIC KEYPAD STUDY 

Two experiments were conducted on newly collected 

numeric keypad input to compare against the password 

performance above and the CMU number-pad study [17].  

In this study, although it was not possible to compare the 

algorithms on the same input data as in the password study 

above because the CMU data were not available, new 

numeric keypad data were obtained in a manner similar to 

how the CMU data were collected. 

A. Data Collection 

The numeric keypad samples were captured using an 

open-source third-party keylogger designed by Fimbel [9]. 

This keylogger was originally developed for testing 

purposes and serves no malicious intent. It runs in the 

background of a computer system thus being unobtrusive to 

the user and allowing for the capture of keyboard and mouse 

input regardless of the application(s) running on a system. 

The numeric keypad data were collected from 30 subjects 

over a four-day period with no more than 60 samples 

collected per subject per day.  Each subject first practiced 

keying the input string several times before the samples 

were recorded. Each sample consisted of the numeric 

sequence 914 193 7761 (shown here in telephone number 

format) followed by the Enter key to provide a total of 11 

keystrokes per sample.  All samples were entered with the 

right hand as if entering a phone number on a digital phone 

or entering an ATM pin, and only correct numeric-sequence 

samples were accepted.   

B. Experimental Design and Results 

The first numeric keypad experiment used the same 31 

CMU features as experiment 1 in the previous section.  

Because the numeric keypad data had only several instances 

of overlap between keys due to the use of only one hand, a 

feature set similar to the one used in experiment 2 in the 

previous section could not be used.  Instead, the second 

keypad experiment used a feature set designed for arbitrary 

long-text input that consisted of 974 features of which only 

a portion were designed for the numeric keypad.  The 

features with missing observations fall back to features with 

a higher frequency according to a fallback model [25].  All 

of the features are statistical in nature, comprised of 

averages and standard deviations of key press duration and 

digraph transition times. The numeric keypad duration 

features are shown in Fig. 3, transition features not shown.  

Because the input was restricted to a specific numeric 

sequence, only 44 of the numeric keypad features were 

actually used in this experiment.   

 
Fig. 3. Numeric keypad duration features. 

 

The leave-one-out cross-validation (LOOCV) procedure 

was used to evaluate system performance. This procedure 

simulates many true users trying to get authenticated and 

many imposters trying to get authenticated as other users.  

For n users each supplying m samples, m*n positive (one for 

each sample) and m*n*(n-1) negative (each sample versus 

the other users) tests can be performed, for a total of m*n*n 

tests. Each experiment must be repeated only once since a 

full ROC curve as described in section II can be derived 

with this method. 

The results are shown in Table 1, the ROC curves in Fig. 

3, and the FAR/FRR versus parameter L curves in Fig. 4.   
 

Table 2. Password and Numeric Keypad Results.  

Experiment
Number of 

Subjects

Samples 

per Subject

Number of 

Features

EER 

(%)

Numeric Keypad 1 30 20 31 10.5

Numeric Keypad 2 30 20 44 6.1  
 

 
Fig. 3. Password and Numeric keypad ROC curves. 
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Fig. 4. FAR/FRR versus L: Exp. 1 (left) and Exp. 2 (right). 

 

V. DISCUSSION 

The performance of a behavioral biometric authentication 

system was evaluated on two different types of short input 

in which the sequence of keystrokes is fixed, password and 

numeric keypad sequences.  In contrast to long text input 

applications, it is more feasible to obtain large numbers of 

enrollment samples for short input applications from the 

population of participants.   

An advantage of the vector-difference model is that it 

operates efficiently with a small number of enrollment 

samples.  Due to the large reference set in the first set of 

experiments, enrollment samples are reduced by k-means 

clustering, creating a smaller “ideal” reference set for each 

user.  This model was then validated by a repeated-random 

subsampling procedure.  With a smaller number of samples 

per subject in the second set of experiments, a leave-one-out 

validation method was used to obtain system performance.  

Privacy is less of a concern for applications of interest 

which collect fixed-text short input, as opposed to those 

which require long-text arbitrary input.  Many authorizing 

entities (ATM, security keypad, mobile phone) already have 

knowledge of the password or numeric sequence which 

must be entered. Others, such as a cash register, do not 

obtain any personal information from the user.  Obtaining a 

metric on the keystroke dynamics of the fixed input does not 

require monitoring a session and possibly collecting 

personal information, as is the case in arbitrary input. 

VI. CONCLUSION 

The main contribution of this study was the development 

of an improved classification system and its performance 

evaluation.  In the password study, on the same CMU input 

data, the Pace Classifier was compared against 14 other 

systems analyzed in a CMU study [15].  The three top 

performing systems in that study had EERs between 9.6% 

and 10.2%, while the EER achieved in this study was 8.7% 

on both the features from the previous study and on a new 

set of features.   

In the numeric keypad study, the EERs achieved were 

10.5% and 6.1%, which are comparable to those obtained in 

the password study described here and to the basic EER of 

8.6% obtained in the CMU numeric keypad study [17]. 
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